
COP 4610L: PHP – Part 3 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Fall 2006

Introduction to PHP – Part 3

COP 4610L: Applications in the Enterprise
Fall 2006

Introduction to PHP – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
ENG3 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

COP 4610L: PHP – Part 3 Page 2 Mark Llewellyn ©

Dynamic Content in PHP
• Of all the strengths PHP exhibits as a server-side scripting

language, perhaps its greatest strength lies in its ability to
dynamically change XHTML output based on user input.

• In this final section of notes, we’ll build on the examples we’ve
constructed in the previous two sets of notes by combining
form.html and form.php into one dynamic PHP document
named dynamicForm2.php.

• We’ll add error checking to the user input fields and inform the
user of invalid entries on the form itself, rather than on an error
page. If an error exists, the script maintains the previously
submitted values in each form element.

• Finally, after the form has been successfully completed, we’ll
store the input from the user in a MySQL database.

COP 4610L: PHP – Part 3 Page 3 Mark Llewellyn ©

Basically, the same
registration form that was
used in a previous example.

COP 4610L: PHP – Part 3 Page 4 Mark Llewellyn ©

Screen the user sees
after clicking the
Register button.

COP 4610L: PHP – Part 3 Page 5 Mark Llewellyn ©

Screen the user sees
after clicking to see
the entire database.

COP 4610L: PHP – Part 3 Page 6 Mark Llewellyn ©

Dynamic nature of the PHP form is illustrated
when the user fails to enter proper information
into the form. In this case, the user forgot to enter
their first name. Error checking is in place on
each user input location and the page is
dynamically updated to reflect the error
processing and correction capabilities. The
database will not be updated until the user has
correctly filled in all required fields.

COP 4610L: PHP – Part 3 Page 7 Mark Llewellyn ©

Screen shot from MySQL of the contacts relation
after the inclusion of several users. Note that the
values in the table are the same as those returned to
the PHP document in the previous slide.

COP 4610L: PHP – Part 3 Page 8 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- dynamicForm2.php -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Sample form to take user input in XHTML</title>
</head>
<body style = "font-family: arial, sans-serif; background-color: #856363"
background=background.jpg>

<?php
extract ($_POST);
$iserror = false;
// array of magazine titles
$maglist = array("Velo-News",

"Cycling Weekly",
"Pro Cycling",
"Cycle Sport",

"RadSport",
"Mirror du Cyclisme");

// array of possible operating systems
$systemlist = array("Windows XP",

"Windows 2000",
"Windows 98",
"Linux",
"Other");

dynamicForm2.php – page 1

COP 4610L: PHP – Part 3 Page 9 Mark Llewellyn ©

// array of name and alt values for the text input fields
$inputlist = array("fname" => "First Name",

"lname" => "Last Name",
"email" => "Email",
"phone" => "Phone");

if (isset ($submit)) {
if ($fname == "") {

$formerrors["fnameerror"] = true;
$iserror = true;

}
if ($lname == "") {

$formerrors["lnameerror"] = true;
$iserror = true;

}
if ($email == "") {

$formerrors["emailerror"] = true;
$iserror = true;

}
if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$", $phone)) {

$formerrors["phoneerror"] = true;
$iserror = true;

}
if (!$iserror) {

// build INSERT query
$query = "INSERT INTO contacts " .

"(ID, LastName, FirstName, Email, Phone, Magazine, OS) " .
"VALUES (null, '$lname', '$fname', '$email', " . "'" . quotemeta($phone) . "', '$mag', '$os')";

dynamicForm2.php – page 2

COP 4610L: PHP – Part 3 Page 10 Mark Llewellyn ©

// Connect to MySQL
if (!($database = mysql_connect("localhost",

"root", "root")))
die("Could not connect to database");

// open MailingList database
if (!mysql_select_db("MailingList", $database))

die("Could not open MailingList database");

// execute query in MailingList database
if (!($result = mysql_query($query, $database))) {

print("Could not execute query!
");
die(mysql_error());

}
print("<p>Hi

 $fname.
Thank you for completing the survey.

You have been added to the
$mag mailing list. </p>
The following information has been saved in our database:

<table border = '0' cellpadding = '0' cellspacing = '10'>
<tr>
<td bgcolor = '#ffffaa'>Name </td>
<td bgcolor = '#ffffbb'>Email</td>
<td bgcolor = '#ffffcc'>Phone</td>
<td bgcolor = '#ffffdd'>OS</td>
</tr>
<tr>

dynamicForm2.php – page 3

COP 4610L: PHP – Part 3 Page 11 Mark Llewellyn ©

<!-- print each form field’s value -->
<td>$fname $lname</td>
<td>$email</td>
<td>$phone</td>
<td>$os</td>
</tr></table>

<div style = 'font-size : 10pt; text-align: center'>

<div style = 'font-size : 18pt'>

Click here to view entire database.
</div>

</div></body></html>");
die();

}
}
print("<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.");
if ($iserror) {

print("

Fields with * need to be filled in properly.");

}
print("<!-- post form data to dynamicForm2.php -->

<form method = 'post' action = 'dynamicForm2.php'>

Please fill out the fields below.

dynamicForm2.php – page 4

Invoke PHP script to see
contents of entire
database if user clicks
this link. Code begins on
page 14.

The form created is self-
submitting (i.e., it posts to

itself). This is done by setting
the action to

dynamicForm2.php

COP 4610L: PHP – Part 3 Page 12 Mark Llewellyn ©

<!-- create four text boxes for user input -->");
foreach ($inputlist as $inputname => $inputalt) {

$inputtext = $inputvalues[$inputname];

print("<img src = 'images/$inputname.gif'
alt = '$inputalt' /><input type = 'text' name = '$inputname' value = '" . $$inputname . "' />");

if ($formerrors[($inputname)."error"] == true)
print("*");

print("
");
}
print("<span style = 'font-size : 10pt");
if ($formerrors["phoneerror"]) print("; color : red");
print("'>Must be in the form (555)555-5555

<img src = 'images/downloads.gif'
alt = 'Publications' />

Which magazine would you like information about?

<!-- create drop-down list containing magazine names -->
<select name = 'mag'>");

foreach ($maglist as $currmag) {
print("<option");
if (($currmag == $mag))

print(" selected = 'true'");
print(">$currmag</option>");

}

dynamicForm2.php – page 5

The $$variable notation
specifies variable
variables. PHP permits the
use of variable variables to
allow developers to
reference variables
dynamically.
The expression $$variable
could also be written as
${$variable} for added
clarity.

COP 4610L: PHP – Part 3 Page 13 Mark Llewellyn ©

print("</select>

Which operating system are you currently using?

<!-- create five radio buttons -->");

$counter = 0;

foreach ($systemlist as $currsystem) {
print("<input type = 'radio' name = 'os'

value = '$currsystem'");

if ($currsystem == $os) print("checked = 'checked'");
if (iserror && $counter == 0) print("checked = 'checked'");

print(" />$currsystem");

if ($counter == 2) print("
");
$counter++;

}

print("<!-- create a submit button -->

<input type = 'submit' name = 'submit' value = 'Register' />
</form></body></html>");

?>

dynamicForm2.php – page 6

COP 4610L: PHP – Part 3 Page 14 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!– formDatabase2.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>
<body style = "font-family: arial, sans-serif"

style = "background-color: #F0E68C" background=image1.jpg>
<?php

extract($_POST);
// build SELECT query
$query = "SELECT * FROM contacts";

// Connect to MySQL
if (!($database = mysqli_connect("localhost", "root", "root“, MailingList)))

die("Could not connect to database");
// query MailingList database
if (!($result = mysqli_query($database, $query))) {

print("Could not execute query!
");
die(mysqli_error());

}
?>
<h3 style = "color: blue">
Mailing List Contacts</h3>

formDatabase2.php – page 1

COP 4610L: PHP – Part 3 Page 15 Mark Llewellyn ©

<table border = "1" cellpadding = "3" cellspacing = "2"
style = "background-color: #ADD8E6">
<tr>

<td>ID</td>
<td>Last Name</td>
<td>First Name</td>
<td>E-mail Address</td>
<td>Phone Number</td>
<td>Magazine</td>
<td>Operating System</td>

</tr>
<?php

// fetch each record in result set
for ($counter = 0;

$row = mysqli_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysqli_close($database);

?>

</table>
</body>

</html>

formDatabase2.php – page 2

COP 4610L: PHP – Part 3 Page 16 Mark Llewellyn ©

Schema of the MailingList
database table contacts required
for the PHP database example to
work. Script is available on the
code page.

COP 4610L: PHP – Part 3 Page 17 Mark Llewellyn ©

Connecting Apache To Tomcat
• Although it is possible for Tomcat to run standalone and server

HTTP requests directly (we did this for servlets and jsps), the
Apache server does a much better job of handling tasks such as
static content and SSL connections.

• For this reason, Tomcat is typically used alongside an Apache
server. Unlike PHP which runs as a module inside the Apache
process, a JVM is external and requires a mechanism to connect
it to the web server.

• Tomcat inherited the Apache JServ protocol (AJP) from the
JServ project. AJP is a protocol for connecting an external
process to a servlet container. It is the responsibility of an
Apache module, in this case mod_jk, to speak this protocol to
the servlet container (Tomcat).

COP 4610L: PHP – Part 3 Page 18 Mark Llewellyn ©

Connecting Apache To Tomcat (cont.)

• In this last section of notes, I’ll show you how to integrate Apache
and Tomcat into a single package.

• The ultimate set-up will resemble the figure shown below. Note
that if you also would like Tomcat to run standalone HTTP
requests, it will need to run on a different HTTP port than Apache.
That’s why I set-up Apache on port 8081 and Tomcat on port
8080.

HTTP
request

HTTP
response

http

Apache Web Server

Listen on
8081

mod_jk

HTTP request
handling process

Tomcat Servlet
Container

Listen on
8009 for

ajp13
protocol

Servlet execution

ajp13

Servlet
request

Servlet
response

COP 4610L: PHP – Part 3 Page 19 Mark Llewellyn ©

Getting The Tomcat Connector
• The first step in Apache-Tomcat integration is to obtain the

Tomcat connector from Apache.

• Follow the screen shots on the next few pages to obtain the
mod_jk connector.

• Windows based connector binary files will typically have the
name of mod_jk.so.

COP 4610L: PHP – Part 3 Page 20 Mark Llewellyn ©

From the main Tomcat webpage, select Tomcat
connectors from the download section. The
current documentation is also available from this
page.

COP 4610L: PHP – Part 3 Page 21 Mark Llewellyn ©

mod_jk download page.

COP 4610L: PHP – Part 3 Page 22 Mark Llewellyn ©

mod_jk download page.

COP 4610L: PHP – Part 3 Page 23 Mark Llewellyn ©

COP 4610L: PHP – Part 3 Page 24 Mark Llewellyn ©

COP 4610L: PHP – Part 3 Page 25 Mark Llewellyn ©

COP 4610L: PHP – Part 3 Page 26 Mark Llewellyn ©

Installing The Tomcat Connector
• Once you’ve downloaded the Tomcat connector, put it in the

modules sub-directory of your Apache installation’s root
directory.

Locate the mod_jk file in the
modules subdirectory of

Apache.

COP 4610L: PHP – Part 3 Page 27 Mark Llewellyn ©

Enabling The Tomcat Connector
• Once you’ve put the connector file in the modules sub-directory of

your Apache installation’s root directory, you are now ready to
configure Apache to recognize and enable the module.

• To do this you’ll need to edit your Apache configuration file. This is
the same file you edited to enable PHP.

• This file is located in the conf subdirectory and is named httpd.

Edit this file

COP 4610L: PHP – Part 3 Page 28 Mark Llewellyn ©

This was added earlier to
enable PHP

Add all of this
material to

enable mod_jk

Add JKMount directives for
any servlets and jsps to go
through Tomcat.

COP 4610L: PHP – Part 3 Page 29 Mark Llewellyn ©

• The JWorkerFile directive (see previous page) refers to a separate
file that configures the ajp13 protocol communications parameters.
An example called workers.properties is included with
mod_jk. For a basic set-up, this default file will work fine.

• There are a couple of things you should verify however: (1)
workers.tomcat_home should agree with the value you’ve
already set for Tomcat called CATALINA_HOME, and (2)
worker.ajp13.port must be the same as the one listed in the
Tomcat server.xml file as shown on the next page.

• In more robust applications, additional editing of the JWorkerFile
will be required. For example, if you have more than one installation
of Tomcat on your machine, you’ll need to adjust the
worker.ajp.port parameter in workers.properties to
make sure that mod_jk is connecting to the correct Tomcat
installation as Tomcat installations will not be able to start up sharing
port numbers.

COP 4610L: PHP – Part 3 Page 30 Mark Llewellyn ©

The portion of the Tomcat
worker.properties file showing the
definition for the default AJP 1.3
worker. NOTE: the port number
listed here must match the port
number listed in the Tomcat
server.xml file as shown on the
next page.

COP 4610L: PHP – Part 3 Page 31 Mark Llewellyn ©

The portion of the
Tomcat server.xml
file showing the
definition for the AJP
1.3 connector. This
connector port
number listed here
must match the port
number in the
workers.properties
file as shown on the
previous page.

